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SUMMARY 

In this paper the pressure method for incompressible fluid flow simulation is extended and applied to  
the numerical simulation of compressible fluid pow. The governing equations, obtained from the physical 
principles of conservation of momentum,mass and energy,are first studied from a characteristic point of view. 
Then they are discretized with a semi-implicit finite difference technique in such a fashion that stability is 
achieved independently of the speed of sound. The resulting algorithm is fast, accurate and particularly 
efficient in subsonic flow calculations. As an example, the computer simulation of the von Karman vortex 
street is described and discussed. 
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INTRODUCTION 

In recent years a special pressure method has been used successfully to simulate numerically a 
variety of incompressible fluid flow problems. 1-5 This method incorporates a space-staggered 
mesh to discretize Navier-Stokes types of equations, and the pressure, at each time step, is 
obtained implicitly by solving a simple system of linear algebraic equations. The resulting velocity 
field is exactly discrete divergence free, in agreement with the assumption of fluid incompressibility. 
The method applies to transient flow simulation of non-homogeneous, non-isothermal, free 
surface and porous reservoir problems in two and in three space dimensions (see Reference 1 for 
details). 

This method for incompressible fluids (in which the speed of sound is assumed to be infinite) is 
extended here to compressible fluids, in which the speed of sound is a function of the pressure and of 
the fluid density. Again, a space staggered mesh is used and the pressure, at each time step, is 
determined implicitly in such a way that the equation of state is satisfied identically. Of course, a 
fully implicit discretization of the governing equations would lead to a method which is 
unconditionally stable; this procedure, however, involves the simultaneous solution of a large 
number of coupled non-linear difference equations. For efficiency, then, only some terms of the 
governing equations are discretized implicitly. Specifically, since in subsonic flows the time scale of 
the speed of sound is faster than the time scale of the flow, our method uses an implicit 
discretization only for those terms which are related to the speed of sound. As a result the method is 
unconditionally stable with respect to the Courant condition for the speed of sound, which is the 
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most restrictive condition for fully explicit methods in subsonic flow calculations. For supersonic 
or slightly subsonic problems, a fully explicit or a fully implicit method becomes more efficient 
because the Courant stability condition on the speed of sound is no longer the critical restriction. A 
similar idea of semi-implicit discretization of the governing equations was used in the SOLA-ICE 
algorithm,6 which allows for a more general equation of state, but requires, at each time step, the 
iterative solution of a non-linear system of equations for the pressure. Moreover, the pressure 
computed with the SOLA-ICE algorithm does not rigorously satisfy the equation of state. Our 
method requires, at each time step, the solution of a simple linear system of algebraic equations. We 
will show that this system has a unique solution and can be solved quickly and economically by 
successive overrelaxation iteration. Alternatively, the use of a fully explicit time splitting method 
which uses small time steps only for the fast time scale also results in an efficient algorithm. This 
approach, recently investigated by Le Veque and Oliger,’ becomes impractical if the speed of 
sound is too large because the smaller time step has to satisfy the Courant condition for the speed of 
sound. 

GOVERNING EQUATIONS 

The basic equations of gas dynamics which are commonly used to model transient compressible 
flow in a given domain are derived from the physical principles of conservation of linear 
momentum, mass and energy (see Reference 8 for details). The equations we will use are the 
following: Euler’s equation of motion 

p -+(q.V)q = - v p  [: ] 
where p is the fluid density, q = (u, v,  w ) ~  is the fluid velocity, and p is the pressure; the continuity 
equation 

and the energy equation 

p - + (q.V)I = - p v . q  [: 3 (3) 

where I is the internal energy per unit mass. 

ideal gas, is taken to be 
The equation of state relating the pressure to both the density and the internal energy, for an 

P = (Y - OPl  

where the constant y is the ratio of specific heats and is greater than unity. Note that viscosity, mass 
diffusion and thermal diffusion terms have not been included in equations (1)-(3). However, there is 
nothing in the general discussion which follows that limits us to consider inviscid flows only, and, at 
present, such terms have been omitted merely for simplicity. 

Let us now define the internal energy E per unit of volume as E = P I .  An equation for E is 
obtained by combining (2) with (3): 

aE 
-+(q’V)E= - 
at ( 5 )  

Equation ( 5 )  will take the place of the energy equation (31, so that the mathematical system (l), (2) 
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and (5),  written out in full in two dimensions, is 

and the equation of state (4) reduces to 

P = (Y - 1)E (7) 
If the energy E in the third equation of system (6) is replaced with p / ( y  - l), system (6) can be 

written in matrix notation as 

aw aw aw 
at ax ay -+ A - +  B-= 0 

where W = (u, v ,  p ,  p)’, and 

If I denotes the identity matrix, the characteristic equation of system (8) is 

det(qZ + rA + sB) = 0 

(q  + ru + su)’ [ (q  + ru + sv)’ - a2(r2 + s 2 ) ]  = 0 
that is, 

where a2 = y p / p ,  and a is the local speed of sound. The triples (q, r,  s) satisfying equation (10) are the 
directions normal to the characteristic cone at its vertex.’ Equation (10) decomposes into the 
following two equations: 

and 
(9 + ru + su)2 = 0 

(q + ru + sv)2 - a’(r2 + 2)  = 0 

Hence, the characteristic cone consists of the line through the vertex parallel to the vector (1,u, v )  
and the right cone whose axis is parallel to (1, u, u) with generating angle a, where a = tan a (see 
Reference 9, p. 385). Note that, whereas the first part of the characteristic cone depends only on the 
fluid velocity u and v,  the second part, which is defined by equation (12), depends also upon the 
speed of sound. Note also that the speed of sound in equation (10) arises from the coefficients of the 
derivatives on the right-hand sides of the first three equations of system (6). Thus, these derivatives 
must be discretized implicitly in order for a numerical method to be unconditionally stable with 
respect to the Courant condition for the speed of sound. If the left-hand sides of each equation in 
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system (6) are discretized with explicit finite differences, then a Courant type of stability condition 
depending on the fluid speed must be satisfied; the latter, however, is far less restrictive than the 
previous one in subsonic flow simulation. Based on this idea, we derive in the next section a finite 
difference scheme for system (6) which uses an implicit discretization only for the derivatives on the 
right-hand sides of the first three equations in system (6). 

FINITE DIFFERENCE DISCRETIZATION 

The finite difference mesh that we are going to use to discretize equations (6) consists of rectangular 
cells of width A x  and height Ay. The field variables u, u, p, E and p are defined at the locations shown 
in Figure 1: u-velocity at the centre of each vertical side of a cell; u-velocity at the centre of each 
horizontal side; pressure p ,  energy E and density p at each cell centre. 

Figure 1. Position of field variables 

Once a finite time step At has been chosen, the first two equations of system (6), that is, the 
momentum equations are discretized in the following way: 

At 

where F!+ and G;,j+ 112 contain the finite differences corresponding to the spatial discretization 
of the convective terms at the time step t,. Particular forms for Fi+ l i 2 , j  and GY,j+ 1 / 2  can be chosen 
in a variety of ways, as, for example, by using a first-order accurate upwind formula or a simple 
space centred difference formula. The latter, however, is unstable if no artificial viscosity is added to 
the system. A still more sophisticated formula can be obtained by using a higher order upwind 
differencing for convection." For the time being F;+ 1,2, and C;,j+ 1,2 will be left unspecified. The 
discrete variables pC+ l i z , j  and pt j+  l j z  in (13) are defined as simple averages from the closest scalar 
grid points. 

The third equation of system (6), that is the energy equation, is discretized at each cell centre as 
follows: 

where H;, contains finite differences corresponding to the spatial discretization of the convective 
terms of the energy equation. A particular form for H;, can also be chosen in a variety of ways and, 
for the time being, it will be left unspecified. 

The last equation of system (6), which can be written in the following conservative form: 
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has been studied in several discretized forms. One such form, which is conservative, is the particular 
upwind differencing scheme defined as follows: 

p ? ? l - p ? .  p? I +  1 / 2 , j G ' + 1 / 2 , j  - ~ ; - 1 / 2 , j ~ Y - 1 , 2 . j  P ; j +  1 / 2 ~ Y , j +  112 - ~ : . j - l / 2 v Y , j -  112 - 
~~ 1 . J  1 . J  + + -0  (16) 

At A x  AY 
where 

~ 1 + 1 / 2 , j = d , j  for u;+ 112, j > 0, P:+ 112, j = PY+ 1, j for 4+ 112 ,  j < 0 
~ : - 1 / 2 , j =  ~ Y - 1 . j  for 4 - 1 / 2 , j > O ,  ~ Y - l / 2 , j = P ; , j  for u:- 112, < 0 

p;, j -  112 = p; , j -  for v;, j -  112 > 0, pY, j -  1/2 = p;, for v:, j -  112 < 0 
P Y , j + 1 / 2  = d , j  for ~ ; , j + l j z > O ,  p ; , j + 1 / 2 = p Y , j + l  for v Y , j + 1 / 2 < 0  

Finally, the equation of state (7) is required to be satisfied at each cell center at all time levels: 

(17) p;,; = ( y  - l ) E i , j  n +  1 

Once a discretization formula for the convective terms in the momentum and in the energy 
equation has been chosen, F ; + l / 2 , j ,  G Z j + , / ,  and H;, j  are determined and the finite difference 
equations (13), (14), ( 1  6) and (17) can be used to generate recursively values of u, v, E, p and p at time 
level n + 1 from known values at time level n, n = 0,1,. . .. Specifically, values for pY,T1 can be 
determined explicitly in each cell by using equation (16), while values for U Y : , ' ~ ~ , ~ ,  v;,f: l j2 ,  E l ;  and 
p;,; follow by solving the linear system of equations determined by (13), (14) and (17), over the cell 
configuration. Since this system has to be solved at each time step and because most of the 
computational effort of the method is taken by the solution of this system, the next section will be 
devoted to discussing the special iterative technique to be used. 

PRESSURE EVALUATION 

Unlike implicit methods, the determination of u n + l ,  v"+l, En+' and pnfl can be accomplished 
efficiently because the corresponding linear system determined by equations (1 3), (14) and (17) can 
be reduced to a smaller one having only the pressures p;,f as unknowns. The reduced system is 
then solved with the successive overrelaxation iterative method, which can be implemented in such 
a fashion that the unknown pressures pY,f and velocities U Y : ~ ~ , , ~  and v;,;: 1 / 2  are determined 
simultaneously. Finally, the new energy E;,; satisfying (14) can be evaluated directly from the 
equation of state (17). Specifically, we proceed as follows: 

Elimination of E;,:' from (14) and (17) yields 

If now U Y : : ~ ~ , ~ ,  
that one obtains from (13), we find the following finite difference equation for the pressure: 

v;,;: 1/2 and u;,:! 1/2 in ( 1  8) are replaced with the corresponding expressions 
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Equation (19), applied on each finite difference cell, yields a system of linear equations with 
unknowns p;,;l. This system, since y > 1 and p z j  and E;,j are positive quantities, is strictly 
diagonally dominant and has a unique solution which can be obtained by successive 
overrelaxation. 

In sweeping the cells of the computational domain from left to right and bottom to top, the 
successive overrelaxation formula for p;,; in (1 9) is given by 

(p:,: I)("+ = (p7.f I)(') - (~7,: I)(') - Y(Y - 1)E:, j(At)2 

- 
n + l  ( v ) -  n + l ( v )  n + l ( v )  n + l  ( v + 1 )  

( P i + I , j )  ( P i , j  1 ( P i , j  ) - ( P i - l , j )  

P:- 1 / 2 , j ( A x 1 2  

1 n + l ( v )  n + l ( v )  n + l  ( v + l )  
( ~ ; , > + ! l ) ( ~ ) - ( ~ i , j  - ( P i , j  ) - b i , j - l )  

& j +  1 / 2 ( A ~ ) ~  p y , j - 1 / 2 ( A y I 2  
+ 

-(Y - 

so that the iterative formula (20) can also be written in the following way: 
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The iterative formulae (22), (23), which are equivalent to (20), can be further simplified by defining 
the pressure change (6p7,f')'" as 

(p;,; ')(") - ( y  - l)[E;, j - (At)H;, j] 

so that (23) reduces to 

(p;,fl)(v+l) = (p;,f1)(") + n + 1 ) ( v )  

and the velocity iterates on each side of cell ( i ,  j) can be updated as follows: 

The iterative procedure then is as follows. At each time level n + 1, the iterative procedure is 
started by using the initial pressure iterates (p;,: I)(') equal to the pressure at the previous time level 
pZj.  The initial velocity iterates are computed explicitly by use of equations (22) with v = 0. Then, 
for each cell (i,j), the pressure change (6pY.f I)(") is calculated with (24) and the pressure at the centre 
and the velocities on the sides of the cell (i, j) are updated by using (25) and (26), respectively. These 
operations are done by sweeping all the cells of the computational domain, from left to right and 
from bottom to top, until convergence has been achieved, that is, until, uniformly, 
l(6py,f1)(")/(p;,; l ) ( v + l ) (  < E for a fixed positive tolerance E .  

This iterative procedure for the pressure equations (18) is of practical implementation on digital 
computers and yields simultaneously the new fluid velocity u;,+;/z,j and at each time step. 
The new values for the energy E;,jf' are then obtained from the equation of state (17). 

VON KARMAN VORTEX STREETS 

Consider now a viscous, compressible fluid which flows in a rectangular domain defined by - 1 < 
x < I ,  0 < y < h. In order to account for the viscous effect on the flow, the viscosity terms must be 
included in the momentum equations of system (6) (see, e.g. Reference 6), but the viscous 
dissipation terms are neglected in the energy equation. Thus, the governing equations for this 
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problem are taken to be 

where the viscosity p is assumed to be constant. The equation of state is again equation (7): 

At the initial time to = 0, the fluid is assumed to be flowing upward uniformly with the vertical 
boundaries and it is assumed to have uniform energy and density. Specifically, the initial conditions 
are taken to be 

p = (y - 1)E. 

The velocity boundary conditions at the vertical boundaries are then 

0 < y < h,t  > 0 
U( - I ,  y, t )  = ~ ( l ,  y, t )  = 

u( - 1, y, t )  = u(1, y, t )  = 0 

At the initial time to = 0, a rigid obstacle is placed centrally along the inflow bottom boundary so 
that at subsequent times the flow is forced around the obstacle into the domain. Specifically, if the 
obstacle has width 2d, with d < 1, the velocity boundary conditions at the bottom horizontal 
boundary are taken to be 

(30) 1 U ( X ,  0, t )  = 0, 
u(x, 0, t )  = 0, 

1 
u(x,O, t )  = ~ 0.16, 

1 - d  

- 1 < x < 1, t > 0, 
- d < x < d , t  > 0, 

- 1 < x < - d , d  < x < I ,  t > 0 

These conditions ensure an entry flow rate equal to the initial flow rate when the obstacle was not 
present. The continuative outflow boundary conditions for the velocity are assumed at the top 
boundary to be 

At the inflow boundaries values for the energy and for the fluid density are given by 

- 1 < x < - d,d < x < 1, t > 0 
E(x, 0, t )  = 1 
P(Xl 0, t )  = 1 
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The parameters of the problem are taken to be p = 001, y = 11,1= 20, h = 60 and d = 4. 
To avoid a symmetric flow pattern, we now simply change u(17, 12.75,O) from 0 to 0.01. 
Equations (27), with the given initial and boundary conditions, can now be solved using the 

numerical method described in the previous section. Note first that, owing to the presence of the 
viscous terms in the momentum equations of system (27), a simple space centred finite difference 
formula can be used to discretize the convective terms with no additional artificial viscosity 
required for stability. The viscous terms can also be discretized with simple, explicit finite 
differences, which are then included in Fy+ and H;, j, 
in this problem, are taken to be 

jand GTj+ 1,2. Specifically, Fy+ j ,  Gy, j +  

where the discrete variables uy,j+l,z, vy+1,2,j, p;, j+ l iz ,  uZj and vZj are defined as simple 
averages from the closest scalar grid points.' 

The flow domain is now covered with 40 by 40 finite difference cells having width Ax = 1 and 
height Ay = 1.5, the overrelaxation factor is fixed to be o = 1.5, the convergence criterion E is 
and a numerical solution is generated at times t ,  = nAt, n = 1,2,. . ., with a time increment At = 1. 
Figures 2-7 show the computer generated velocity field relative to the moving vertical boundaries 
at times t = 500,1000,1500,2000,2500 and 3000, respectively. Initially, the wake of the obstacle is 
laminar; then, as time advances, a regular pattern forms of vortices which move alternately 
clockwise and counterclockwise. At large times the solution becomes periodic with a period of 
approximately 200 time units. Figures 5 and 7 show the solution after five periods, and they are, in 
fact, almost entirely identical; whereas Figures 6 and 7 show the solution after two and half periods, 
and they are almost entirely symmetrical. These vortex patterns form the well-known von Karman 
vortex street, which is frequently observed in experiments when the Reynolds number is between 
certain limits." The deformation of the uppermost vortex shown in Figures 5-7 is due to its 
interaction with the lateral walls. Note, finally, that the speed of sound at the inflow boundaries is 
a = J110 and hence our method has allowed the use of a time step which is over ten times the 
maximum time step allowed by the Courant condition. 
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These computations were performed on the DEC-20 computer at The University of Texas at 
Arlington and the solution at t = 3000 was reached in only 45 min. of CPU time. For the interested 
reader, the FORTRAN program for this specific problem is provided in the Appendix of 
Reference 1.2. 

CONCLUSION 

The method presented in this paper is a new finite difference method for transient, compressible 
fluid flow simulation. The characteristic equation of the flow model is first studied in order to 
determine that special semi-implicit discretization which allows us to avoid the Courant stability 
condition for the speed of sound. An efficient algorithm for the practical implementation of this 
method on digital computers is also provided. As an example, a von Karman vortex street has been 
simulated and the results thus obtained compare well with observation and experimentation. Use 
of this method for other compressible fluid flow problems is deemed promising. 
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